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B. Osgood
Stanford University

D. Stowe
Idaho State University

Let f be a continuous, increasing function of R into itself. Let

kf (x, h) =
f(x + h)− f(x)

f(x)− f(x− h)
, x ∈ R, h > 0.

Observe that if g = af + b, a, b ∈ R then kg = kf . One can show conversely that if
kg = kf then g = f up to a real affine transformation. The quantity kf is called the
quasisymmetry quotient of f . A function is c-quasisymmetric, c ≥ 1, if

1

c
≤ kf (x, h) ≤ c.(1)

The condition (1) also implies that f(±∞) = ±∞. We refer to the book by Lehto and
Virtanen [?] for a thorough discussion of the role of quasisymmetric functions in the
theory of quasiconformal mappings.

Due to its simple form the quasisymmetry quotient necessarily satisfies any number
of algebraic identities. Two of these are sufficient, as we shall prove in the following
existence theorem.

Theorem Suppose that k(x, h) is a positive, continuous function on the open upper
half-plane {(x, h):x ∈ R, h > 0} satisfying the identities

k(x, 2h)

k(x, h)
=

1 + k(x + h, h)

1 + k(x− h, h)−1
,(2)

and
k(x, 3h)

k(x, h)
=

1 + k(x + h, h) + k(x + h, h)k(x + 2h, h)

1 + k(x− h, h)−1 + k(x− h, h)−1k(x− 2h, h)−1
.(3)

Then there is a continuous, increasing function f such that kf (x, h) = k(x, h).
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If in addition k(x, h) is bounded between 1/c and c, then of course f is c-quasisymmetric.

Proof. For all nonnegative integers m and n, let

f

(
m

2n

)
=

m−1∑
r=0

r∏
j=1

k(j/2n, 1/2n)

2n−1∑
r=0

r∏
j=1

k(j/2n, 1/2n)

,

f

(
−m

2n

)
= −

m∑
r=1

r−1∏
j=0

k(−j/2n, 1/2n)−1

2n−1∑
r=0

r∏
j=1

k(j/2n, 1/2n)

.

Here we follow the usual convention that an empty sum has the value 0 and an empty
product has the value 1. Thus f(0) = 0 and f(1) = 1.

Equation (2) implies that f is well defined. To check this it is useful to establish,
by induction, the following formulas:

r∏
j=1

k(j/2n, 1/2n) =

2r∏
j=1

k(j/2n+1, 1/2n+1) +
2r+1∏
j=1

k(j/2n+1, 1/2n+1)

1 + k(1/2n+1, 1/2n+1)
,

r−1∏
j=0

k(−j/2n, 1/2n)−1 =

2r−2∏
j=0

k(−j/2n+1, 1/2n+1)−1 +
2r−1∏
j=0

k(−j/2n+1, 1/2n+1)−1

1 + k(1/2n+1, 1/2n+1)
.

Sum the first identity from r = 0 to m−1 and then from r = 0 to 2n−1. Dividing the
results gives that f(m/2n) = f(2m/2n+1). Next sum the second identity from r = 1
to m and the first identity from r = 0 to 2n − 1. Dividing the results this time shows
that f(−m/2n) = f(−2m/2n+1). It follows that f is well defined. By construction,

f((m + 1)/2n)− f(m/2n)

f(m/2n)− f((m− 1)/2n)
= k(m/2n, 1/2n), m, n ∈ Z, n ≥ 0.(4)

So far, f is defined at the dyadic rationals, m/2n, and it is strictly increasing. Let
x be a nondyadic number and define f(x) to be the supremum of f on the set of dyadic
rationals less than x. This defines f everywhere as a strictly increasing function.

Consider the set of points (x, h) in the upper half-plane where k(x, h) = kf (x, h).
By (4) this set contains all points (m/2n, 1/2n), where m and n are integers and n ≥ 0.
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By (2) it contains (x, 2h) whenever it contains (x− h, h), (x, h), and (x+ h, h). Hence
it contains all points (m/2n, 2p), where m,n, p ∈ Z, n ≥ 0. Likewise by (3) it then
contains all points (m/2n, 2p3q), where p, q ∈ Z, and q ≥ 0. Let D denote the set of
dyadic rationals and let T denote the rationals of the form 2p3q, p, q ∈ Z, q ≥ 0. Then
D × T is dense in the upper half-plane and

k(x, h) =
f(x + h)− f(x)

f(x)− f(x− h)
, (x, h) ∈ D × T .(5)

Once we know that f is continuous it will then also follow that k(x, h) = kf (x, h) for
all x ∈ R, h > 0.

Solving (5) for f(x) yields

f(x) =
f(x + h) + k(x, h)f(x− h)

1 + k(x, h)
, (x, h) ∈ D × T .(6)

Letting h decrease to a positive limit then implies that

f(x) =
f+(x + h) + k(x, h)f−(x− h)

1 + k(x, h)
, x ∈ D, h > 0,(7)

where f+ is the right-hand limit of f and f− is the left-hand limit.
Let x0 ∈ R. Consider x < x0 with x ∈ D and let x + h = x0 + 1. If we take the

limit in (7) as x ↑ x0 we obtain

f−(x0) =
f+(x0 + 1) + k(x0, 1)f−(x0 − 1)

1 + k(x0, 1)
.

On the other hand, consider x > x0 with x ∈ D and let x−h = x0− 1. Now if we take
the limit as x ↓ x0 we get

f+(x0) =
f+(x0 + 1) + k(x0, 1)f−(x0 − 1)

1 + k(x0, 1)
.

Thus f+(x0) = f−(x0), and f is continuous at x0. Since x0 was arbitrary this proves
that f is continuous on R, and completes the proof of the theorem.

In closing we remark that it is unlikely a single condition such as (2) on a function
k(x, h) will be sufficient by itself for k to be a quasisymmetry quotient. For example, let
ϕh(x) = ϕ(x, h) be a continuous function in the upper half-plane such that ϕ(x, 2h) =
ϕ(x, h) and such that the 1-parameter family of functions x 7→ ϕh(x) are uniformly
quasisymmetric. If

k(x, h) =
ϕ(x + h, h)− ϕ(x, h)

ϕ(x, h)− ϕ(x− h, h)
,

then k satisfies (2), but it is not of the form kf unless all the functions x 7→ ϕh(x) are
equivalent under the group of operations f 7→ af + b.
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